PJ52916QW

GENERAL DESCRIPTION

The product of PJ52916 is an ultra-low on-resistance, power-distribution switch equipped with external soft start control. It integrates a N-channel MOSFET that can each deliver 6 A continuous load current.

The device contains over-temperature protection.
When the junction temperature rises above $160^{\circ} \mathrm{C}$, the over-temperature protection function shuts down the N -channel MOSFET power switch and turns the power switch on automatically when temperature drops by $25^{\circ} \mathrm{C}$.

The device is available in lead free DFN2x2-8 package.

FEATURES

- Wide input voltage range (V_{IN}) : 0.6 V to 5.5 V
- Supply voltage range ($\mathrm{V}_{\mathrm{BIAS}}$) : 2.5 V to 5.5 V
- Ron : $13 \mathrm{~m} \Omega$ (typ.)
- Continuous current : up to 6 A
- Soft start time programmable by external capacitor
- Integrated Quick Output Discharge
- Enable input of switch :

■ PJ52916A : Logic high turns on switch
■ PJ52916B: Logic low turns on switch

- Over-temperature protection
- Package : DFN2x2-8

APPLICATIONS

- Notebook
- Tablet PCs
- AIO PC
- Consumer electronics
- Set-top boxes
- Telecom systems
- Industrial systems

ORDERING INFORMATION

ORDER NUMBER	ENABLE	MARKING ID	PACKAGE	DESCRIPTION
PJ52916AQW_R1	Logic High	A1 W	DFN2x2-8	Halogen Free in T\&R, 3000 pcs/Reel
PJ52916BQW_R1	Logic Low	A2 W	DFN2x2-8	Halogen Free in T\&R, 3000 pcs/Reel

PJ52916QW

PIN CONFIGURATION

Figure-1. PIN CONFIGURATION (TOP VIEW)

FUNCTIONAL PIN DESCRIPTION

NAME	I/O	DESCRIPTION
VIN	P	Power supply input of switch. Connect this pin to an external DC supply
EN / ENB	I	Enable input of switch. The pin cannot be left floating EN : logic high turns on switch ENB : logic low turns on switch
BIAS	P	Bias voltage input pin for internal control circuitry
GND	G	Ground pin of the circuitry. All voltage levels are measured with respect to this pin.
SS	-	Soft start control of switch. A capacitor (CT) from this pin to ground sets the VOUT's rise slew rate.
VOUT	P	Switch output.
Exposed Pad	P	Connect this pad to system ground plane for good thermal conductivity.

(1) I - Input; P - Power; G - Ground

6A, Ultra-Low On-Resistance Load Switch with Soft Start In a DFN2x2-8 Package

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted) ${ }^{(1)}$

PARAMETER		MIN	MAX	Unit
VIN	VIN input voltage	-0.3	6	V
V ${ }_{\text {bIAS }}$	BIAS input voltage	-0.3	6	V
Vout	VOUT output voltage	-0.3	6	V
$\mathrm{V}_{\text {En }}$, $\mathrm{V}_{\text {enb }}$	EN or ENB to GND voltage	-0.3	6	V
Iout(MAX)	Maximum pulsed switch current, pulse < $300 \mu \mathrm{~s}, 1 \%$ duty cycle		8	A
$\mathrm{T}^{(2)}$	Operating junction temperature range	-40	150	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-65	150	${ }^{\circ} \mathrm{C}$
TSDR	Maximum lead soldering temperature (10s)		260	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model (HBM) ESD stress voltage	-7000	7000	kV

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Operating at junction temperatures greater than $125^{\circ} \mathrm{C}$, although possible, degrades the lifetime of the device.

THERMAL INFORMATION

THERMAL RESISTANCE		DFN2x2-8	UNIT
θ_{JA}	Junction to ambient thermal resistance	TBD	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc}	Junction to case resistance	TBD	${ }^{\circ} \mathrm{C} / \mathrm{W}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER		MIN	TYP	MAX	UNIT
VIN	Input voltage range	0.6	-	5.5	V
$V_{\text {bias }}$	BIAS input voltage	2.5		5.5	V
lout	Output DC current range	0	-	6	A
$\mathrm{V}_{\mathrm{en}}, \mathrm{V}_{\text {enb }}$	Input logic high	1		5.5	V
	Input logic low	0		0.4	V
TA	Operating Ambient temperature	-40	-	85	${ }^{\circ} \mathrm{C}$
TJ	Operating Junction temperature	-40	-	125	${ }^{\circ} \mathrm{C}$

6A, Ultra-Low On-Resistance Load Switch with Soft Start In a DFN2x2-8 Package

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathbb{I}}=0.6 \mathrm{~V}$ to $5 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=$ High or $\mathrm{V}_{\text {ENB }}=$ Low. $\mathrm{T}_{J}=-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$. Typical value is tested at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Supply current						
I_{0}	BIAS supply current	No load		28	50	$\mu \mathrm{A}$
Isd,VBIAs	BIAS supply current at shutdown	No load, $\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		2.5	5	$\mu \mathrm{A}$
		No load, $\mathrm{V}_{\mathrm{ENB}}=5 \mathrm{~V}$		3.5	5	$\mu \mathrm{A}$
$I_{\text {sd, VIN }}$	VIN off-state supply current	$\begin{aligned} & \text { No load, } \mathrm{V}_{\text {BAS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{ENB}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=5 \mathrm{~V} \end{aligned}$		0.01	8	$\mu \mathrm{A}$
		$\begin{aligned} & \text { No load, } \mathrm{V}_{\text {BIA }}=5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{ENB}}=5 \mathrm{~V}, \mathrm{~V}_{I N}=3.3 \mathrm{~V} \end{aligned}$		0.01	3	$\mu \mathrm{A}$
		No load, $\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{ENB}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=1.8 \mathrm{~V}$		0.01	2	$\mu \mathrm{A}$
		$\begin{aligned} & \text { No load, } \mathrm{V}_{\text {BAS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {ENB }}=5 \mathrm{~V}, \mathrm{~V}_{I N}=0.8 \mathrm{~V} \end{aligned}$		0.01	1	$\mu \mathrm{A}$

Under-voltage lockout (UVLO)

$V_{\text {UVLO }}$	Rising BIAS UVLO threshold	V BIAS rising	1.9	2.1	2.3	V
VUvLo, Hys	BIAS UVLO hysteresis			0.1		V

Power switch

$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Power switch on resistance	$\begin{aligned} & \mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.6 \text { to } 5 \mathrm{~V}, \\ & \text { Iout }=1 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \end{aligned}$	13	18	$\mathrm{m} \Omega$
		$\begin{aligned} & \mathrm{V}_{\text {BIAS }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.6 \text { to } 2.5 \mathrm{~V} \text {, } \\ & \text { lout }=1 \mathrm{~A}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \end{aligned}$	13	18	$\mathrm{m} \Omega$
	VOUT discharge resistance	$V_{\text {EN }}=0 \mathrm{~V} \text { or } \mathrm{V}_{\text {ENB }}=5 \mathrm{~V} \text {, }$ VOUT force 1 V	100		Ω

Soft-start control pin

ISS	SS discharge current	$V_{\text {SS }}=6 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {ENB }}=5 \mathrm{~V}$, measured at SS		1.5	mA

EN or ENB input pin

$\mathrm{V}_{\mathrm{EN},} \mathrm{V}_{\mathrm{ENB}}$	Input logic high		1			V
	Input logic low				0.4	V
I_{EN}	EN Input current				1	$\mu \mathrm{~A}$

Overt-temperature protection (OTP)

	Over-temperature threshold	T_{J} rising		160		${ }^{\circ} \mathrm{C}$
	Over-temperature threshold hysteresis	T_{J} falling		25		${ }^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)						
ton	Turn on time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		1200		$\mu \mathrm{S}$
$\mathrm{t}_{\text {OFF }}$	Turn off time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		1		
t_{R}	VOUT rise time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		1800		
t_{F}	VOUT fall time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{I}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		2		
$t_{\text {D }}$	ON delay time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		390		
$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$ (unless otherwise noted)						
ton	Turn on time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{I N}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		430		$\mu \mathrm{S}$
$\mathrm{t}_{\text {OFF }}$	Turn off time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		1		
t_{R}	VOUT rise time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		320		
t_{F}	VOUT fall time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		1.9		
$t_{\text {D }}$	ON delay time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		290		
$\mathrm{V}_{\text {IN }}=0.6 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)						
ton	Turn on time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		450		$\mu \mathrm{S}$
toff	Turn off time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		1		
t_{R}	VOUT rise time	$\begin{aligned} & R_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		260		
t_{F}	VOUT fall time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		1.4		
$t_{\text {D }}$	ON delay time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		330		
$\mathrm{VIN}_{\text {IN }}=\mathrm{V}_{\text {BIAS }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)						
ton	Turn on time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{I N}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		1000		$\mu \mathrm{S}$
$\mathrm{t}_{\text {OFF }}$	Turn off time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		1.3		
$t_{\text {R }}$	VOUT rise time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		1450		
t_{F}	VOUT fall time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		2.2		
$t_{\text {D }}$	ON delay time	$\begin{aligned} & R_{L}=10 \Omega, C_{L}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{T}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		440		

PJ52916QW

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=2.5 \mathrm{~V}, \mathrm{~T}_{\text {A }}=25^{\circ} \mathrm{C}$ (unless otherwise noted)						
ton	Turn on time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\text {ON }}=5 \mathrm{~V} \end{aligned}$		600		$\mu \mathrm{S}$
toff	Turn off time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\text {ON }}=5 \mathrm{~V} \end{aligned}$		1.3		
$\mathrm{t}_{\text {R }}$	$V_{\text {Out }}$ rise time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathbb{N}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V} \end{aligned}$		480		
t_{F}	$V_{\text {Out }}$ fall time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\text {ON }}=5 \mathrm{~V} \end{aligned}$		2.3		
$t_{\text {D }}$	ON delay time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\text {ON }}=5 \mathrm{~V} \end{aligned}$		380		
$\mathrm{V}_{\text {IN }}=0.6 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)						
ton	Turn on time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\text {ON }}=5 \mathrm{~V} \end{aligned}$		620		$\mu \mathrm{S}$
toff	Turn off time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\text {ON }}=5 \mathrm{~V} \end{aligned}$		1.2		
t_{R}	$V_{\text {Out }}$ rise time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\text {ON }}=5 \mathrm{~V} \end{aligned}$		380		
t_{F}	Vout fall time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\text {ON }}=5 \mathrm{~V} \end{aligned}$		1.5		
$t_{\text {D }}$	ON delay time	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \\ & \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{~V}_{\text {ON }}=5 \mathrm{~V} \end{aligned}$		430		

Typical Operating Characteristics

$\mathrm{V}_{\text {In }}=\mathrm{V}_{\text {bias }}$, $\mathrm{V}_{\text {on }}=5 \mathrm{~V}$, $\mathrm{V}_{\text {out }}=0 \mathrm{~V}$
Figure-2. BIAS supply current vs. BIAS voltage

$\mathrm{V}_{\text {BIAS }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=0 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=0 \mathrm{~V}$
Figure-4. Input shutdown current vs. Input voltage

PJ52916QW

6A, Ultra-Low On-Resistance Load Switch with Soft Start In a DFN2x2-8 Package

Typical Operating Characteristics (Continue)

Condition : $\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{BIAS}}=\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$

Figure-5. Turn on response time

Figure-7. Rise time vs. Input voltage

Figure-9. Delay time vs. Input voltage

Typical Operating Characteristics (Continue)

Condition : $\mathrm{R}_{\mathrm{L}}=10 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{IN}}=1 \mu \mathrm{~F}, \mathrm{C}_{\mathrm{T}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.6 \mathrm{~V}$

Figure-10. Turn on response time

Figure-12. Rise time vs. Input voltage

Figure-14. Delay time vs. Input voltage

Figure-11. Turn off response time

Figure-13. Fall time vs. Input voltage

BLOCK DIAGRAM

Figure-05. Block diagram

APPLICATION SCHEMATIC

Figure-16. Typical application

FEATURE DESCRIPTION

BIAS Under-voltage Lockout (UVLO)

Wrong logic controls are prevented by an un-der-voltage lockout (UVLO) circuit which monitors the BIAS pin's voltage. During powering on, the UVLO function initiates a soft-start process after the BIAS supply voltages exceed the rising UVLO voltage threshold.

Soft-start

An adjustable soft-start circuitry is provided by the family of PJ52916 to control the rising rate of the output voltage and limit the current surge during start-up. A capacitor connected from the SS pin to the ground controls the soft-start duration.

Precise Enable Control

Pulling the ENB pin above 1 V or the EN pin below 0.4 V will deactivate the device, while pulling the EN pin above 1 V or the ENB pin below 0.4 V will enable the device. It is not possible to let the EN/ENB pins float.

Quick Output Discharge (QOD)

There is a QOD feature included in the family of PJ52916. An internal discharge resistance is connected between VOUT and GND to remove the remaining charge from the output when the switch is disabled. This resistance has a typical value of 100Ω and prevents the output from floating while the switch is disabled. It is recommended that the device gets disabled before VBIAS falls below the minimum recommended voltage.

Over-temperature protection (OTP)

The internal thermal sense circuit turns off the power FET when the junction temperature exceeds $160^{\circ} \mathrm{C}$ to allow the device to cool down. The internal thermal sense circuit will enable the device when the device's junction temperature cools by $25^{\circ} \mathrm{C}$, resulting in a pulsed output during continuous thermal protection. For normal operation, the junction temperature cannot exceed $\mathrm{TJ}=135^{\circ} \mathrm{C}$, and thermal protection is designed to protect the IC in the event of over temperature conditions.

Soft-Start Time

Css(nF)	Soft-start time ($\mu \mathrm{s}$) 10% to $90 \%, \mathrm{~V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}, \mathrm{C}_{\text {IN }}=1 \mu \mathrm{~F}, \mathrm{R}_{\mathrm{L}}=10 \Omega$, Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.							
	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=1.2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{IN}}=1.05 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	$\mathrm{V}_{\text {IN }}=0.6 \mathrm{~V}$
0	220	170	130	110	95	85	70	65
1	1800	1200	680	570	460	410	320	260
10	16000	10500	5500	4550	3650	3200	2560	2350

APPLICATION INFORMATION

Power Sequencing

Figure-17. Power sequencing diagram
The internal parasitic diodes of the power switch connected from Vout to Vin will be forward biased while IC is in the UVLO state. The internal parasitic diodes connected from Vout to Vbias will be forward biased if Vout is higher than $V_{B I A S}$, and $V_{B I A S}$ must be higher than the voltage of any other input pin.

Timing Chart

Figure-18. t_{R} / t_{F} wave forms

Figure-19. ton/toff wave forms

PJ52916QW

6A, Ultra-Low On-Resistance
Load Switch with Soft Start
In a DFN2x2-8 Package

Soft Start Capacitor

A capacitor that is connected from the SS pin to the ground and used to control the soft-start period might lessen output voltage overshoot and inrush current.

Capacitor Selection

Proper input capacitors are necessary for the family of PJ52916 to supply current surge during stepping load transients to prevent the input voltage rail from dropping. More input capacitance is required for higher parasitic inductance in order to reduce the slew rate of the surge currents coming from voltage sources or other bulk capacitors to the VIN pin.

Input capacitance of $1 \mu \mathrm{~F}$ is advised for VIN in all applications except OTP or output short circuits. To prevent voltage overshoot from exceeding the device's absolute maximum voltage during load transi-
ent situations, more input capacitance may be required.

It is advised that VOUT's output capacitance be no less than $0.1 \mu \mathrm{~F}$. Please put the capacitors as close to the PJ52916 as possible. To sustain load transient current, it is advised to place a bulk output capacitor close to the load.

PCB Layout Guidelines

In order to reduce EMI and increase heat dissipation, the PCB layout needs to be properly executed. Locate the PJ52916 and output capacitors close to the load to reduce parasitic resistance and inductance for excellent load transient performance. The input capacitors must be placed as close to the VIN pin as possible, the output decoupling capacitors for the load must be placed as close to the load as possible for decoupling high-frequency ripples.

PACKAGE DIMENSION - DFN2x2-8

Symbol	Dimensions In Millimeters	
	Min	Max
A	0.70	0.80
A1	0.00	0.05
A3	0.15	0.25
b	1.90	2.10
D	1.90	2.10
E	0.50	0.70
D2	1.10	1.30
E2	0.40	0.60
E	0.20	-
L	0.30	0.40
R	0.09	-

PJ52916QW
6A, Ultra-Low On-Resistance
Load Switch with Soft Start
In a DFN2x2-8 Package

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining

