

GENERAL DESCRIPTION

The PJ67250 device, incorporating patented accurately measures technology, is a fully integrated, single-chip, pack-based solution that provides a rich array of features for gas gauging, protection, and authentication for 2-series, 3-series, and 4-series cell Li-Ion and Li-Polymer battery packs.

Using its integrated high-performance analog peripherals, the PJ67250 device measures and maintains an accurate record of available capacity, voltage, current, temperature, and other critical parameters in Li-lon or Li-Polymer batteries, and reports this information to the system host controller over an SMBus v3.1 compatible interface.

The PJ67250 device supports TURBO mode 3.0 by providing the available max power and max current to the host system. The device also supports Battery Trip Point to send a BTP interrupt signal to the host system at the pre-set state of charge thresholds.

The PJ67250 provides software-based 1st- and 2nd-level safety protection against over-voltage, under-voltage, overcurrent, short-circuit current, overload, and over-temperature conditions, as well as other pack- and cell- related faults.

SHA-1/SHA-256 and ECC authentication, with secure memory for authentication keys, enables identification of genuine battery packs.

The compact 32-lead QFN package minimizes solution cost and size for smart batteries while providing maximum functionality and safety for battery gauging applications.

FEATURES

- Fully Integrated 2-Series, 3-Series, and 4-Series
 Li-Ion or Li-Polymer Cell Battery Pack Manager and
 Protection
- Patented Accurately Measures Available Charge in Li-Ion and Li-Polymer Batteries
- High Side N-CH Protection FET Drive
- Integrated Cell Balancing While Charging or at Rest
- Full Array of Programmable Protection Features
 - Voltage
 - Current
 - Temperature
 - Charge Timeout
 - CHG/DSG FETs
 - AFE
- Sophisticated Charge Algorithms
 - JEITA
 - Enhanced Charging
 - Adaptive Charging
 - Cell Balancing
- Supports TURBO Mode 3.0
- Supports Battery Trip Point (BTP)
- Diagnostic Lifetime Data Monitor and Black Box Recorder
- LED Display
- Supports Two-Wire SMBus v3.1 Interface
- SHA-1/SHA-256, ECC Authentication
- Compact Package: 32-Lead QFN4x4

APPLICATIONS

- Notebook / Tablets
- UPS and Battery Backup System
- Power Tools and Clean Robot
- Drone

ORDERING INFORMATION

ORDER NUMBER	Marking ID	Package	Description
PJ67250QW_R1	A1 YM DNN	QFN4x4-32	Halogen Free in T&R, 3000 pcs/Reel

SIMPLE SCHEMATIC

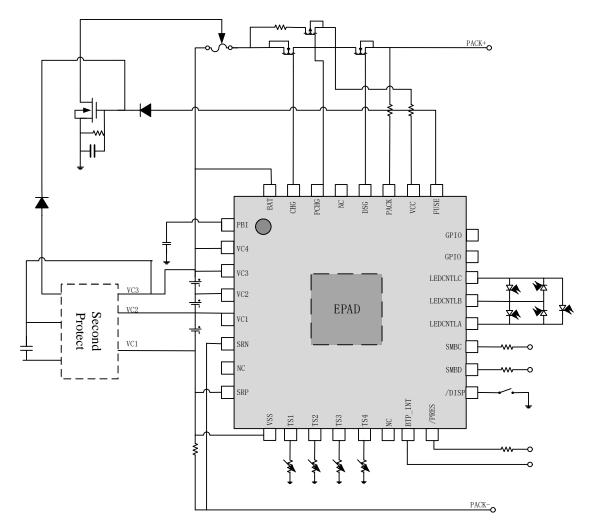
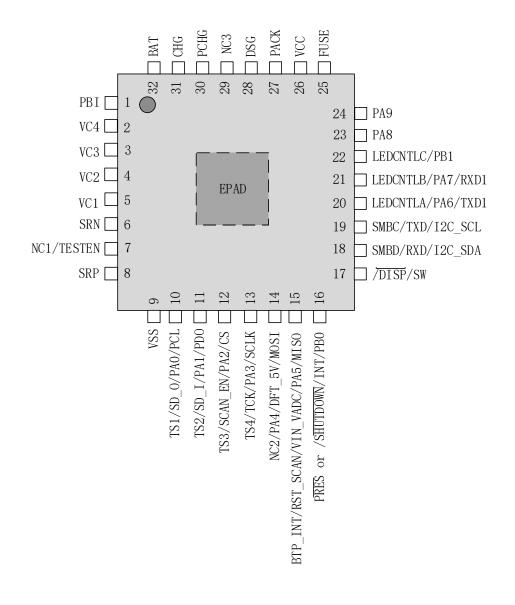



Figure-1. PJ67250 Simple Schematic

PIN CONFIGURATION

(TOP VIEW)

2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager In a QFN4x4-32 Package

FUNCTIONAL PIN DESCRIPTION

TERMINAL		PIN				
NUMBER	NAME	TYPE	DESCRIPTION			
1	PBI	Р	Power supply backup input pin			
2	VC4	I	Sense voltage input pin for most positive cell, and balance current input for most positive cell			
3	VC3	I	Sense voltage input pin for second most positive cell, balance current input for second most positive cell, and return balance current for most positive cell			
4	VC2	I	Sense voltage input pin for third most positive cell, balance current input for third most positive cell, and return balance current for second most positive cell			
5	VC1	I	Sense voltage input pin for least positive cell, balance current input for least positive cel and return balance current for third most positive cell			
6	SRN	I	Analog input pin connected to the internal coulomb counter peripheral for integrating small voltage between SRP and SRN where SRP is the top of the sense resistor			
7	NC1	-	Not internally connected, it can connect to ground			
7	TESTEN	I	TESTEN pin for DFT			
8	SRP	I	Analog input pin connected to the internal coulomb counter peripheral for integrating a small voltage between SRP and SRN where SRP is the top of the sense resistor			
9	VSS	Р	Device Ground			
	TS1	I	Temperature sensor 1 thermistor input pin			
10	SD_0	I/O	SD_0 pin of DFT			
10	PA0	I/O	General purpose GPIO			
	PCL	I/O	PCL pin of SWD			
	TS2	I	Temperature sensor 2 thermistor input pin			
11	SD_I	I/O	SD_I pin of DFT			
11	PA1	I/O	General purpose GPIO			
	PDO	I/O	PDO pin of SWD			
	TS3	I	Temperature sensor 3 thermistor input pin			
12	SCAN_EN	I	SCAN_EN pin of DFT			
12	PA2	I/O	General purpose GPIO			
	CS	I	Chip Select pin of SPI, pull it high , when it was selected			

TERMINAL		PIN	DESCRIPTION
NUMBER	NAME	TYPE	DESCRIPTION
	TS4	I	Temperature sensor 4 thermistor input pin
13	ТСК	I	TCK pin of DFT
13	PA3	I/O	General purpose GPIO
	SCLK	I	Clock pin of SPI
	NC2	-	Not internally connected
14	DFT_5V	I	Enable pin of DFT_5V
14	PA4	I/O	General purpose GPIO
	MOSI	0	Host data output, slave data input signal
	BTP_INT	0	Power Ground. PGND requires extra care during PCB layout. Connect to GND with copper traces and vias
	RST_SCAN	I	Reset scan pin of DFT
15	VIN_VADC	I	VADC input
	SP5	I/O	General purpose GPIO
	MISO	I	The host data input, slave data output signal
	/PRES or /SHUTDN	ο	Current monitor output
16	PB0	I/O	General purpose GPIO
	INT	0	Interrupt output of AFE
17	DISP	-	EN input. Apply logic high to enable the chip
17	SW	0	Interrupt wakes up the chip from Shutdown
	SMBD	I/O	SMBus data pin
18	RXD	I/O	Receiver terminal of UART
	I2C_SDA	I	Data input of I2C interface
	SMBC	I/O	SMBus clock pin
19	TXD	I/O	Transmitter terminal of UART
	I2C_SCL	I	Clock input of I2C

TERMINAL		PIN	DESCRIPTION
NUMBER	NAME	TYPE	DESCRIPTION
	LEDCNTLA	I/O	LED display control pin
20	PA6	I/O	General purpose GPIO
TXD1		I/O	Transmitter1 terminal of UART
	LEDCNTLB	I/O	LED display control pin
21	PA7	I/O	General purpose GPIO
	RXD1	I/O	Receiver1 terminal of UART
22	LEDCNTLC	I/O	LED display control pin
22	PB1	I/O	General purpose GPIO
23	PA8	I/O	PTC, Safety PTC thermistor input pin. To disable, connect both PTC and PTCEN to VSS
24	PA9	I/O	PTCEN, Safety PTC thermistor enable input pin. Connect to BAT. To disable, connect both PTC and PTCEN to VSS
25	FUSE	0	Fuse drive output pin
26	VCC	Р	Secondary power supply input
27	PACK	I	Pack sense input pin
28	DSG	0	NMOS Discharge FET drive output pin
29	NC3	-	Not internally connected
30	PCHG	0	PMOS Precharge FET drive output pin
31	CHG	0	NMOS Charge FET drive output pin
32	BAT	Р	Primary power supply input pin

ABSOLUTE MAXIMUM RATINGS

Over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

	PARAMETER	MIN	MAX	Unit
	BAT, VCC, PBI	-0.3 30 -0.3 30	V	
	PACK, PA6, PA7, PA8, PA9, PB1	-0.3	30	V
	PA0, PA1, PA2, PA3, PA4, PA5, PB0, SW, TESTEN	-0.3	3.6	V
	SRP, SRN	-0.3	3.5	V
	VC4	VC3 - 0.3		V
Voltage range at terminals ⁽²⁾	VC3	VC2 - 0.3		V
	VC2	VC1 - 0.3		V
	VC1	VSS - 0.3		V
	CHG, DSG, VBMC	-0.3	32	V
	PCHG, SDSG	-0.3	30	V
Current Range	VSS source Current		50	mA
TJ	Operating junction temperature range	-40	150	°C
Тѕтс	Storage temperature range	-65	150	°C

(1) Stresses beyond those listed under *absolute maximum ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *recommended operating conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to network ground terminal.

HANDLING RATINGS

PARAMETER	DEFINITION	MIN	MAX	UNIT
ESD ⁽¹⁾	Human body model (HBM) ESD stress voltage ⁽²⁾	-2	2	kV
	Charged device model (CDM) ESD stress voltage ⁽³⁾ , all pins	-1	1	kV

(1) Electrostatic discharge (ESD) to measure device sensitivity and immunity to damage caused by assembly line electrostatic discharges into the device.

(2) Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(3) Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

RECOMMENDED OPERATING CONDITIONS

	F	PARAMETER	MIN	ТҮР	MAX	UNIT
Vcc	Supply voltage	BAT, VCC, PBI	4.4		26	V
Vshutdown-	Shutdown voltage	VPACK < VSHUTDOWN-	1.75	2.2	2.6	V
VSHUTDOWN+	Start-up voltage	VPACK > VSHUTDOWN- + VHYS	2.05	2.45	2.85	V
V _{HYS}	Shutdown voltage hysteresis	VSHUTDOWN+ - VSHUTDOWN-		250		mV
		PACK, SMBC, SMBD, PRES, BTP_IN, DISP			26	
	Input voltage range	TS1, TS2, TS3, TS4			Vreg	
		LEDCNTLA, LEDCNTLB, LEDCNTLC			Vbat	
Vin		SRP, SRN	-0.2		0.2	V
		VC4	V _{VC3}		V _{VC3} +5	
		VC3	V _{VC2}		V _{VC2} +5	
		VC2	V _{VC1}		V _{VC1} +5	
		VC1	V _{VSS}		V _{VSS} +5	
Vo	Output voltage range	CHG, DSG, PCHG, FUSE			26	V
Срві	External PBI capacitor		2.2			uF
Topr	Operating temperature		-40		85	°C

THERMAL INFORMATION

	THERMAL RESISTANCE	WQFN-32 (4mm x 4mm)	UNIT
Θ _{JA} ⁽¹⁾	Junction to ambient thermal resistance (JESD51-7)	46.8	°C/W
ΘJC(top)	Junction to case (top) thermal resistance	19.5	°C/W
Θ _{JB}	Junction to board thermal resistance	14.7	°C/W
Ψյт	Junction to top characterization parameter	0.8	°C/W
ΨJB	Junction to board characterization parameter	14.4	°C/W
ΘJC(bottom)	Junction to case (bottom) thermal resistance	3.8	°C/W

(1) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

T_J = -40°C to 85°C, V_{IN} = 14.4V. Typical value is tested at T_J = +25°C, unless otherwise noted.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SUPPLY Cur	rent - V _{CC} = 4.4V to 26V					
INORMAL	NORMAL mode	CHG on. DSG on, no Flash write		400	600	uA
		CHG off, DSG on, no SMBus (5S/ test)		80	120	uA
ISLEEP	SLEEP mode	CHG off, DSG on, no SMBus (3S/ test)		88	132	uA
		CHG off, DSG off, no SMBus (5S/ test)		52	78	uA
ISHUTDOWN	SHUTDOWN mode	When $T_J = 85^{\circ}C$, <10uA		7	10	uA
Power Suppl	y Control - V _{CC} = 4.4V to 26	l V				
V _{SWITCHOVER-}	BAT to Vcc switchover voltage	VBUS > VSWITCHOVER-	2.6	3.1	3.6	V
$V_{\text{SWITCHOVER+}}$	Vcc to BAT switchover voltage	VBUS < VSWITCHOVER- + VHYS	2.25	2.85	3.4	V
VHYS	Switchover voltage hysteresis	Vswitchover+ – Vswitchover-		250		mV
AFE Power-C	On Reset - V _{CC} = 4.4V to 26V	/				
V _{REG}	AFE Voltage	V _{REG}	1.95	2	2.05	V
V _{REGIT-}	Negative-going voltage input	V _{REG}	1.7	1.8	1.9	V
V _{HYS}	Power-on reset hysteresis	VREGIT+ – VREGIT–	70	100	130	m۷
t _{RST}	Power-on reset time		200	300	400	uS
AFE Watchde	og Reset and Wake Time	r - $V_{CC} = 4.4V$ to 26V				
		t _{WDT} = 500	372	500	628	- mS
		t _{WDT} = 1000	744	1,000	1256	
t _{WDT}	AFE watchdog timeout	t _{WDT} = 2000	1,488	2,000	2,512	
		t _{WDT} = 4000	2,976	4,000	5,024	
		t _{WAKE} = 250	186	250	314	
		t _{WAKE} = 500	372	500	628]
t _{WAKE}	AFE wake timer	t _{WAKE} = 1000	744	1,000	1,256	– mS
		t _{WAKE} = 2000	1,488	2,000	2,512	-
t _{FETOFF}	FET off delay after reset	t _{FETOFF} = 512	409	512	614	mS
Current Wak	e Comparator - V _{CC} = 4.4V	to 26V				
		$V_{WAKE} = \pm 0.625 \text{ mV}$	±0.3	±0.625	±0.9	
		$V_{WAKE} = \pm 1.25 \text{ mV}$	±0.6	±1.25	±1.8	1.
Vwake	Wake voltage threshold	$V_{WAKE} = \pm 2.5 \text{ mV}$	±1.2	±2.5	±3.6	— mV
		V _{WAKE} = ±5 mV	±2.4	±5.0	±7.2	
$V_{WAKE(DRIFT)}$	Temperature drift of V _{WAKE} accuracy			0.5%		°C
t _{WAKE}	Time from application of current to wake interrupt				700	μS

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$t_{\text{WAKE(SU)}}$	Wake comparator startup time		500	1,000		μS
VC1, VC2, V	VC3, VC4, BAT, PACK - V _{ct}	c = 4.4V to 26V	I			I
		VC1 - VSS, VC2 - VC1, VC3 - VC2, VC4 - VC3	0.198	0.2	0.202	
к	Scaling factor	BAT - VSS, PACK - VSS	0.049	0.05	0.051	_
		VREF2	0.49	0.5	0.51	
M		VC1 - VSS, VC2 - VC1, VC3 - VC2, VC4 - VC3	- 0.2		5	v
V _{IN}	Input voltage range	BAT - VSS, PACK - VSS	- 0.2		20	v
I _{LKG}	Input leakage current	VC1, VC2, VC3, VC4 cell balancing off, cell detach detection off, ADC multiplexer off			1	μA
I _{CB}	Internal cell balance current	IDS(ON) internal switching current, when $2V < V_{DS} < 4 V$	2		20	mA
I _{CD}	Internal cell detach check current	VCx > VSS + 0.8 V	30	50	70	μA
HV GPIO (P	PA1) - V _{CC} = 4.4V to 26V					
V _{OH}	Output voltage high	I _{OH} = 1.5 mA	3			V
V _{OL}	Output voltage low	I _{OL} = 1.5 mA			0.4	V
C _{IN}	Input capacitance			5		pF
I _{LKG}	Input leakage current				1	μA
R _{PD}	Pulldown resistance	V _{DD} =3.3V	42	60	78	ΚΩ
HV GPIO SI	MBus - V _{CC} = 4.4V to 26V					
	Input voltage high	V _{REG} = 1.8 V	1.26			V
Vih	(SMBus,I2C)	V _{REG} = 1.2 V	0.96			V
	Input voltage high (UART)	V _{DD} = 3.3V	0.7xV _{DD}			V
	Input voltage Low	V _{REG} = 1.8 V			0.54	V
VIL	(SMBus,I2C)	V _{REG} = 1.2 V			0.4	V
	Input voltage Low (UART)	V _{DD} = 3.3V			$0.3 x V_{\text{DD}}$	V
V _{OH}	Output voltage high	I _{OH} = 3mA	3			V
Vol	Output voltage low	I _{OL} = 3mA			0.4	V
C _{IN}	Input capacitance			5		pF
I _{LKG}	Input leakage current				1	μA
Rph	Pull-up resistance	V _{DD} = 3.3V	48	60	72	ΚΩ
R _{PD}	Pull-down resistance	V _{DD} = 3.3V	42	60	78	KΩ
GPIO (PA0,	PA1, PA2, PA3, PA4, PA5	, PA6, PA7, PA8, PA9, PB0, SW) - $V_{CC} = 4.4 V$ to	26V			
VIH	Input voltage high	V _{DD} =3.3V	$0.7 \mathrm{xV}_{\mathrm{DD}}$			V
VIL	Input voltage low				$0.3 x V_{\text{DD}}$	V
V _{OH}	Output voltage high	Input voltage high	3			V
V _{OL}	Output voltage low	IOL=1.5mA			0.4	V

F	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
CIN	Input capacitance			5		pF
I _{LKG}	Input leakage current				1	μA
R _{PH}	Pull-up resistance	V _{DD} = 3.3V	48	60	72	ΚΩ
R _{PD}	Pull-down resistance	V _{DD} = 3.3V	42	60	78	ΚΩ
LED Display	• V _{CC} = 4.4V to 26V	I				
V _{IH}	Input voltage high		1.45			V
VIL	Input voltage low				0.55	V
V _{OH}	Output voltage high	V _{BAT} > 3.0 V, I _{OH} = -22.5 mA	V _{BAT} -1.6			V
V _{OL}	Output voltage low	l _{ol} = 1.5 mA			0.4	V
I _{SC}	High level output current protection		-30	-45	-60	mA
IOL	Low level output current	V _{BAT} > 3.6 V, V _{OH} = 0.4 V	15.75	22.5	29.25	mA
ILEDCNTLX	Current matching between LEDCNTLx	V _{BAT} >3.6 V		±1		%
C _{IN}	Input capacitance			20		pF
I _{LKG}	Input leakage current				1	μA
fledcntlx	Frequency of LED pattern			124		Hz
Coulomb Cou	Inter - $V_{CC} = 4.4V$ to 26V					1
Input voltage ra	nge		- 0.1		0.1	V
Full scale range			V _{REF1} /10		V _{REF1} /10	V
Integral nonlinea	arity	16-bit, best fit over input voltage range	±5.2		±22.3	LSB
Offset error		16-bit, Post-calibration		±2.5	±5	μV
Offset error drift		16-bit + sign, Post-calibration		0.2	0.3	µV/ °C
Gain error		16-bit + sign, over input voltage range		±0.2%	±0.8%	FSR
Gain error drift		16-bit + sign, over input voltage range		30	150	PPM/ °C
Effective input re	esistance		2.5			MΩ
Conversion time)	Single conversion		250		mS
Effective resolut	ion	Single conversion	16			Bits
VADC - V _{CC} = 4	4.4V to 26V	1	ı			·
		Internal reference (VREF1)	-0.2		1	
Input voltage ra	nge	External reference (VREG)	-0.2		0.8 × V _{REG}	V
Full scale range	1	VFS = VREF1 or VREG	-V _{FS}		V _{FS}	V
late and a 2		16-bit, Input Range -0.1 V~0.8 × VREF1			±6.6	1.05
Integral nonlinea	arity	16-bit, Input Range -0.2 V ~ -0.1 V			±13.1	LSB

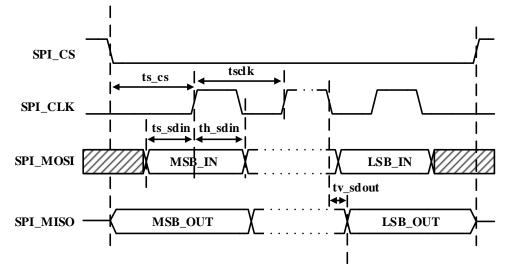
P	ARAMETER	TEST CONDITIONS	MIN	ТҮР	МАХ	UNIT
Offset error		16-bit, Post-calibration, VFS = VREF1		±67	±157	μV
Offset error drift		16-bit, Post-calibration, VFS = VREF1		0.6	3	µV/ °C
Gain error		16-bit, -0.1 V to 0.8 × VFs		±0.2%	±0.8%	FSR
Gain error drift		16-bit, -0.1 V to 0.8 × VFS			30	PPM/ °C
Effective input re	esistance		8			MΩ
		Single conversion		31.25		
Conversion time		Single conversion		15.63		
Conversion time		Single conversion		7.81		mS
		Single conversion		1.95		
Resolution		No missing codes	16			Bits
Effective resolution		With sign, tCONV = 31.25mS	15	16		
		With sign, tCONV = 15.63mS	14	15		Bits
		With sign, tCONV = 7.81mS	12	13		
		With sign, tCONV = 1.95mS	10 11			
CHG, DSG FE	T Drive - $V_{CC} = 4.4V$ to 26V					
		$\begin{array}{l} \mbox{Ratio}_{\mbox{CHG}} = \ (V_{\mbox{CHG}} - V_{\mbox{BAT}}) \ /V_{\mbox{BAT}}, \ 4.4V < V_{\mbox{BAT}} < \\ \ 4.8V \ , \ 10 \ M\Omega \ between \ BAT \ and \ CHG \end{array}$		2.333		_
Output voltage r	atio	$\label{eq:Ratio} \begin{split} \text{Ratio}_{\text{DSG}} = (V_{\text{DSG}} - V_{\text{BAT}})/V_{\text{BAT}}, \ 4.4V < V_{\text{BAT}} < 4.8V, \\ 10 \ \text{M}\Omega \ \text{between PACK} \ \text{and} \ \text{DSG} \end{split}$		2.333		_
		$\label{eq:Ratio_VBMC} \begin{array}{l} \mbox{Ratio}_{VBMC} = \ (V_{BMC} - V_{BAT}) \ /V_{BAT}, \ 4.4V < V_{BAT} < \\ \ 4.8V \ , \ 10 \ M\Omega \ between \ PACK \ and \ BMC \end{array}$		2.333		_
		Ratio_{CHG} = V_{CHG} - V_{BAT}, 4.8 < V_{BAT} , 10 M Ω between BAT and CHG	9	11	12.5	V
V _(FETON)	Output voltage, CHG and DSG on	Ratio _{DSG} = $V_{DSG} - V_{BAT}$, 4.8 < V_{BAT} , 10 M Ω between PACK and DSG	9	11	12.5	V
		RatioV _{BMC} = V _{BMC} - V _{BAT} , 4.8 < V _{BAT} , 10 MΩ between PACK and BMC	9	11	12.5	V
		$V_{\text{DSG(OFF)}}$ = V_{DSG} – $V_{\text{PACK}},$ 10 M Ω between PACK and DSG	-0.4		0.4	V
$V_{(FETOFF)}$	Output voltage, CHG and DSG off	$V_{CHG(OFF)}$ = $V_{CHG}~-~V_{BAT,}$ 10 M Ω between PACK and BMC	-0.4		0.4	v
		$V_{\text{BMC(OFF)}}$ = V_{BMC} – $V_{\text{BUS}},$ 10 M Ω between PACK and BMC	-0.4		0.4	v
R _{SHUTDOWN}	Shut-down impedance	Shut-down Impedance of CHG MOS / DSG MOS / VBUS MOS			50	ΚΩ

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		$\label{eq:VDSG} \begin{array}{l} V_{\text{DSG}} \text{ from } 0\% \text{ to } 35\% \ V_{\text{DSG}(\text{ON})(\text{TYP})}, \ V_{\text{BAT}} \ \geq 2.2 \ \text{V}, \\ C_{\text{L}} = 4.7 \ \text{nF} \ \text{between DSG} \ \text{and PACK}, \ 5.1 \text{k}\Omega \\ \text{between DSG} \ \text{and } C_{\text{L}}, \ 10 \ \text{M}\Omega \ \text{between PACK} \\ \text{and DSG} \end{array}$		250	500	
t _R	Rise time	$\label{eq:V_CHG} \begin{array}{l} V_{CHG} \mbox{ from 0\% to 35\% } V_{CHG(ON)(TYP)}, \ V_{BAT} \geq 2.2 \ V, \\ C_L = 4.7 \ nF \ between \ CHG \ and \ BAT, \ 5.1 \ k\Omega \\ between \ CHG \ and \ C_L, \ 10 \ M\Omega \ between \ PACK \\ and \ CHG \end{array}$		250	500	μS
		$\label{eq:VBMC} \begin{array}{l} V_{\text{BMC}} \text{ from } 0\% \text{ to } 35\% \ V_{\text{BMC}(\text{ON})(\text{TYP})}, \ V_{\text{BAT}} \geq 2.2 \ \text{V}, \\ C_{\text{L}} = 4.7 n \text{F} \text{ between } V_{\text{BMC}} \text{ and } V_{\text{BUS}}, \ 5.1 \text{k}\Omega \\ \text{between } V_{\text{BMC}} \text{ and } C_{\text{L}}, \ 10 M\Omega \text{ between } V_{\text{BUS}} \text{ and } \\ V_{\text{BMC}} \end{array}$		250	500	
		$\label{eq:VDSG} \begin{array}{l} V_{\text{DSG}} \text{ from } V_{\text{DSG}(\text{ON})(\text{TYP})} \ \text{ to } 1 \ \text{V}, \ \text{V}_{\text{BAT}} \geq 2.2 \ \text{V}, \ \text{C}_{\text{L}} \\ = 4.7 n \text{F} \ \text{between } \text{DSG} \ \text{and } \text{PACK}, \ 5.1 \ \text{k}\Omega \\ \\ \text{between } \text{DSG} \ \text{and } C_{\text{L}}, \ 10 \ \text{M}\Omega \ \ \text{between } \text{PACK} \\ \\ \text{and } \text{DSG} \end{array}$		120	250	μS
		$ \begin{array}{l} V_{BMC} \mbox{ from } V_{BMC(ON)(TYP)} \mbox{ to 1 } V, V_{BAT} \geq 2.2 V, C_L = \\ 4.7nF \mbox{ between } V_{BMC} \mbox{ and } V_{BUS}, 5.1 k\Omega \mbox{ between } \\ V_{BMC} \mbox{ and } C_L, 10 M\Omega \mbox{ between } V_{BMC} \mbox{ and } V_{BUS} \end{array} $		120	250	μS
		$\label{eq:V_CHG} \begin{array}{l} V_{CHG} \mbox{ from } V_{CHG(ON)(TYP)} \mbox{ to 1 V, } V_{BAT} \geq 2.2 \mbox{ V, } C_L \\ = 4.7 \mbox{ nF between CHG and BAT, } 5.1 \mbox{ k} \Omega \\ \mbox{ between CHG and } C_L, \mbox{ 10 } M\Omega \mbox{ between PACK} \\ \mbox{ and CHG} \end{array}$		90	150	μS
tF	Fall Time	$\label{eq:VDSG} \begin{array}{l} V_{\text{DSG}} \text{ from } V_{\text{DSG(ON)(TYP)}} \text{ to } 1 \text{ V}, V_{\text{BAT}} \geq 2.2 \text{ V}, C_{\text{L}} \\ = & 4.7 \text{ nF} \text{ between DSG and PACK, } 5.1 \Omega \\ \text{between DSG and } C_{\text{L}}, 10 M\Omega \text{ between PACK} \\ \text{and DSG} \end{array}$		60	100	μS
		$\label{eq:VBMC} \begin{array}{l} \text{VBMC from VBMC(ON)(TYP) to 1 V, VBAT} \geq \\ 2.2 \text{ V, } C_L = 4.7 n \text{F} \text{ between } V_{\text{BMC}} \text{ and } V_{\text{BUS}}, 5.1 \text{k}\Omega \\ \text{between } V_{\text{BMC}} \text{ and } C_L, 10 M\Omega \text{ between } V_{\text{BUS}} \text{ and} \\ V_{\text{BMC}} \end{array}$		60	100	μS
		VCHG from VCHG(ON)(TYP) to 1 V, VBAT \geq 2.2 V, C _L = 27 nF between CHG and BAT, 250 Ω between CHG and C _L , 10 M Ω between BAT and CHG		40	100	μS

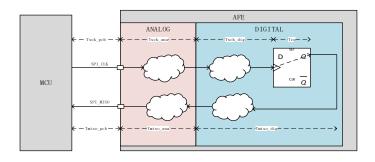
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PCHG FET D	Drive - V _{CC} = 4.4V to 26V					
V _(FETON)	Output voltage, P_{CHG} on	$V_{\text{PCHG}(\text{ON})}$ = V_{VCC} – $V_{\text{PCHG}},100~\text{K}\Omega$ between V_{CC} and PCHG	6	7	8	V
$V_{(FETOFF)}$	Output voltage, P _{CHG} off	$V_{\text{PCHG(OFF)}}$ = V_{VCC} – $V_{\text{PCHG}},$ 100 K Ω between V_{CC} and PCHG	-0.4		0.4	V
tr	Rise Time	$ \begin{array}{l} V_{\text{PCHG}} \text{ from 10\% to 90\% } V_{\text{PCHG(ON)(TYP)}}, V_{\text{CC}} \geq 8 \text{ V}, \\ C_{\text{L}} = 4.7 \text{ nF between PCHG and } V_{\text{CC}}, 5.1 \text{k}\Omega \\ \text{between PCHG and } C_{\text{L}}, 100 \text{ k}\Omega \text{ between CHG} \\ \text{and } V_{\text{CC}} \end{array} $		40	200	μS
tF	Fall Time	$ \begin{array}{l} V_{\text{PCHG}} \text{ from 90\% to 10\% } V_{\text{PCHG(ON)(TYP)}}, V_{\text{CC}} \geq 8 V, \\ C_{\text{L}} = 4.7 \text{nF} \text{ between PCHG and } V_{\text{CC}}, 5.1 \text{k}\Omega \\ \text{between PCHG and } C_{\text{L}}, 100 \text{k}\Omega \text{ between CHG} \\ \text{and } V_{\text{CC}} \end{array} $		40	200	μS
FUSE Drive	$-V_{\rm CC} = 4.4$ V to 26V					4
		VBAT ≥ 8 V, CL = 1 nF, IAFESDSG = 0 µA	6	7.5	8.65	V
V _{OH}	Output voltage high	VBAT < 8 V, CL = 1 nF, IAFESDSG = 0 μA	V _{BAT} –0.		VBAT	V
V _{IH}	Input voltage high		1.5	2	2.5	V
I _{AFESDSG(PU)}	Internal pullup current	VBAT ≥ 8 V, VAFESDSG = VSS		150	330	nA
I _{DN}	Internal pullup current		41	51	61	kΩ
RAFESDSG	Output impedance		2	2.6	3.2	kΩ
C _{IN}	Input capacitance			5		pF
t _{DELAY}	Fuse trip detection delay		128		256	μS
t _{RISE}	Fuse output rise time	VBAT ≥ 8 V, CL = 1 nF, VOH = 0 V to 5 V		5	20	μS
Internal Tem	perature Sensor - V _{CC} = 4.4	4V to 26V				<u> </u>
	Internal temperature	V _{TEMPP}	-1.9	-2.0	-2.1	mV/
V _{TEMP}	sensor voltage drift	Vtempp - Vtempn	0.177	0.178	0.179	°C
δ°C	Accuract of Temp.	Single point calibration	-3		3	°C
External Ten	nperature Sensor - V _{CC} = 4	4V to 26V				
		TS1, TS2, TS3, TS4, VBIAS = VREF1	-0.2		0.8 × V _{REF1}	V
V _{IN}	Input voltage range	TS1, TS2, TS3, TS4, VBIAS = VREG	-0.2		0.8 × V _{REG}	V
R _{NTC(PU)}	Internal pullup resistance	TS1, TS2, TS3, TS4	14.4	18	21.6	kΩ
$R_{\text{NTC}(\text{DRIFT})}$	Resistance drift Over temperature	TS1, TS2, TS3, TS4	-360	-280	-200	PPM/ °C
Internal 2.0V	LDO - $V_{CC} = 4.4V$ to 26V					
V _{REG}	LDO Regulator voltage		1.9	2	2.1	V
$\Delta V_{O(TEMP)}$	Regulator output over temperature	$\Delta V_{\text{REG}}/\Delta T_{\text{A}}$, I _{REG} = 10 mA		±0.25		%
$\Delta V_{O(\text{LINE})}$	Line regulation	$\Delta V_{\text{REG}}/\Delta V_{\text{BAT}}, V_{\text{BAT}}=10 \text{ mA}$	-0.6		0.5	%
$\Delta V_{O(\text{LOAD})}$	Load regulation	$\Delta V_{REG} / \Delta I_{REG}$, $I_{REG} = 0$ mA to 10 mA	-1.5		1.5	%

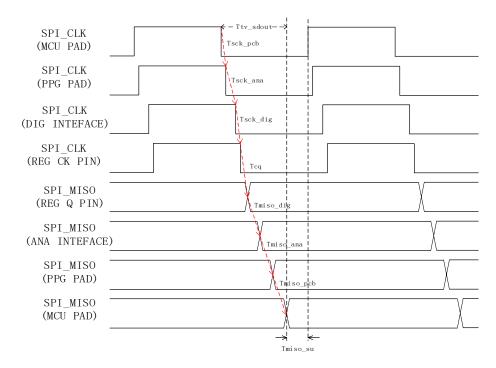
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{REG}	Regulator output current limit	$V_{REG} = 0.9 \times V_{REG(NOM)}, V_{IN} > 4.4V$	20			mA
I _{SC}	Regulator shortcircuit	$V_{\text{REG}} = 0 \times V_{\text{REG(NOM)}}$	25	40	55	mA
PSRR _{REG}	Power supply rejection ratio	$\Delta V_{BAT}/\Delta V_{REG}$, I _{REG} =10mA ,V _{IN} > 2.5V, f =10Hz		40		dB
V _{SLEW}	Slew rate enhancement voltage threshold	V _{REG}	1.78	1.85		V
Internal 1.5V	LDO - $V_{CC} = 4.4V$ to 26V	I	1			
V _{REG15}	LDO regulator voltage		1.35	1.5	1.65	V
V _{PORth}	POR raise threshold	Raise threshold	1.2		1.45	V
V _{PORhys}	POR hysteresis Voltage	Hysteresis Voltage		0.1		V
$\Delta V_{O(TEMP)}$	Regulator output over temperature	$\Delta V_{\text{REG}} / \Delta T_{\text{A}}$, I _{REG} = 40 mA		±0.25		%
$\Delta V_{O(\text{LINE})}$	Line regulation	$\Delta V_{REG} / \Delta V_{BAT}$, V_{BAT} = 40 mA	-0.6		0.5	%
$\Delta V_{O(\text{LOAD})}$	Load regulation	$\Delta V_{REG} / \Delta I_{REG}$, $I_{REG} = 0$ mA to 40 mA	-1.5		1.5	%
I _{REG}	Regulator output current limit	$V_{REG} = 0.9 \times V_{REG(NOM)}, V_{IN} > 4.4V$	30			mA
Internal 3.3V	LDO - V _{CC} = 4.4V to 26V		1			
V _{REGRTC}	3.3V regulator voltage	3.3V LDO output	3.135	3.3	3.465	V
I _{LOAD}	Regulator output current			20	30	V
$\Delta V_{O(TEMP)}$	Regulator output over temperature	$\Delta V_{REG} / \Delta T_A$, I _{REG} = 10 mA		±0.25		V
$\Delta V_{O(\text{LINE})}$	Line regulation	$\Delta V_{REG} / \Delta V_{BAT}$, V_{BAT} =10 mA	-0.6		0.50	%
$\Delta V_{O(\text{LOAD})}$	Load regulation	$\Delta V_{REG}/\Delta I_{REG}$, $I_{REG} = 0$ mA to 10 mA	-1.5		1.50	%
R _{sw}	Switch resistance			5	6.5	Ω
I _{OCP}	Over current protection		50	100	150	mA
Low-Frequer	ncy Oscillator - V _{CC} = 4.4V	to 26V	•			
f _{LFO}	Operating frequency			524.288		kHz
	_	TA = -20°C to 70°C, includes frequency drift	-1.5	±0.25	1.5	%
$f_{LFO(ERR)}$	Frequency error	$T_A = -40^{\circ}C$ to 85°C, includes frequency drift	-2.5	±0.25	2.5	%
$f_{LFO(FAIL)}$	Failure detection frequency		30	80	100	kHz
High-Freque	ncy Oscillator - $V_{CC} = 4.4V$	to 26V	1			
F _{HFO}	Operating frequency			24		MHz
	_	T _A = -20°C to 70°C, includes frequency drift	-2.5	±0.25	2.5	%
f _{HFO(ERR)}	Frequency error	$T_A = -40^{\circ}C$ to 85°C, includes frequency drift	-3.5	±0.25	3.5	%
		$T_A = -20^{\circ}C$ to 85°C, oscillator frequency within ±3% of nominal			4	mS
t _{HFO(SU)}	Frequency set-up time	oscillator frequency within ±3% of nominal			100	μS
Voltage Refe	rence 1 - V_{CC} = 4.4V to 26V		<u>ı</u>			
V _{REF1}	Internal reference voltage	T _A = 25°C, after trim	1.21	1.215	1.22	V
	Internal reference	$T_A = 0^{\circ}C$ to 60°C, after trim		±50		PPM/
$V_{\text{REF1}(\text{DRIFT})}$	voltage drift	$T_A = -40^{\circ}C$ to 85°C, after trim		±80		°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Voltage Ref	erence 2 - V _{CC} = 4.4V to 26V					
V_{REF2}	Internal reference voltage	TA = 25°C, after trim	1.22	1.225	1.23	V
	Internal reference $T_A = 0^{\circ}C$ to 60°C, after trim			±20		PPM/
$V_{REF2(DRIFT)}$	voltage drift	T _A = -40°C to 85°C, after trim		±30		°C
Instruction	Flash - V _{CC} = 4.4V to 26V		1			
IDD _{READ}	Read current	$\begin{array}{l} CE=V_{IH}, \mbox{ all }I/O's \mbox{ open} \\ Address \mbox{ input }=V_{IL}/V_{IH}, \mbox{ and sequentially} \\ \mbox{ incremented at } f=1/T_{RC}, \ V_{DD}=V_{DDMAX} \end{array}$		1.5	2.5	mA
IDD _{PROG}	Program current	CE=WE=V _{IH} , RE=V _{IH} , V _{DD} =V _{DDMAX}			2	mA
IDD _{ERASE}	Sector/Chip erase current	CE=WE=V _{IH} , RE=V _{IH} , V _{DD} =V _{DDMAX}			1.5	mA
Iwakeup		CE=V _{IL} , DPSTB=V _{IL} , V _{DD} =V _{DDMax} , @FWUP=0			4	mA
	Wake up time current	CE=V _{IL} , DPSTB=V _{IL} , V _{DD} =V _{DDMax} , @FWUP=1			6	mA
I _{SB(2)}	Standby Current	$CE=V_{IL}$, $V_{DD}=V_{DDMAX}$, all inputs are static		100		uA
I _{DEP(2)}	Deep Standby current	CE=V _{IL} , DPSTB=V _{IH} , V _{DD} = V _{DDMAX} , all inputs are static		0.3	15	uA
V _{IL}	Input Low Voltage	V _{DD} =V _{DDMax}			$0.1 \mathrm{xV}_{\mathrm{DD}}$	V
VIH	Input High Voltage	V _{DD} =V _{DDMax}	$0.9 \text{xV}_{\text{DD}}$			V
V _{OL}	Output Low Voltage	$V_{DD} = V_{DDMAX}, I_{OL} = 200 uA$			$0.1 \mathrm{xV}_{\mathrm{DD}}$	V
V _{OH}	Output High Voltage	V _{DD} =V _{DDMIN} , I _{OH} = 150uA	$0.9 \mathrm{xV}_{\mathrm{DD}}$			V
T _{DR}	Data retention	100year@25°C, 20year@105°C	20			Years
N _{END}	Sector Endurance		100,000			Cycle
OCD, SCC,	SCD1, SCD2 and CD_TB C	Current Protection Thresholds - V _{CC} = 4.4V to	26V			
	OCD detection	Vocd = VSRP – VSRN, AFE PROTECTION CONTROL[RSNS] = 1	-16.6		-100	
V _{OCD}	threshold voltage range	Vocd = VSRP – VSRN, AFE PROTECTION CONTROL[RSNS] = 0	-8.3		-50	- mV
	OCD detection threshold voltage	Vocd = VSRP – VSRN, AFE PROTECTION CONTROL[RSNS] = 1		-5.56		mV
1 ,000	program step	Vocd = VSRP – VSRN, AFE PROTECTION CONTROL[RSNS] = 0		-2.78		
V	SCC detection threshold	VSCC = VSRP – VSRN, AFE PROTECTION CONTROL[RSNS] = 1	44.4		200	mV
V _{scc}	voltage range	VSCC = VSRP – VSRN, AFE PROTECTION CONTROL[RSNS] = 0	22.2		100	
A\/	SCC detection threshold	VSCC = VSRP – VSRN, AFE PROTECTION CONTROL[RSNS] = 1		22.2		
ΔV_{SCC}	voltage program step VSCC = VSRP - VSRN, AFE PROTECTION CONTROL[RSNS] = 0 11.1		11.1		— mV	
.,	SCD1 detection	VSCD1 = VSRP – VSRN, AFE PROTECTION CONTROL[RSNS] = 1	-44.4		-200	.,,
V _{SCD1}	threshold voltage range	Vscd1 = Vsrp – Vsrn, AFE PROTECTION CONTROL[RSNS] = 0	-22.2		-100	- mV



	PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
	SCD1 detection	VSCD1 = VSRP - VSRN, AFE PROTECTION CONTROL[RSNS] = 1		-22.2		
ΔV_{SCD1}	threshold voltage program step	VSCD1 = VSRP - VSRN, AFE PROTECTION CONTROL[RSNS] = 0		-11.1		- mV
N	SCD2 detection	VSCD2 = VSRP - VSRN, AFE PROTECTION CONTROL[RSNS] = 1	-44.4		-200	
V _{SCD2}	threshold voltage range	VSCD2 = VSRP - VSRN, AFE PROTECTION CONTROL[RSNS] = 0	-22.2		-100	- mV
A)/	SCD2 detection	VSCD2 = VSRP - VSRN, AFE PROTECTION CONTROL[RSNS] = 1		-22.2		m)/
ΔV_{SCD2}	threshold voltage program step	VSCD2 = VSRP - VSRN, AFE PROTECTION CONTROL[RSNS] = 0		-11.1		- mV
N	SCD_TB detection	VSCD_TB = VSRP - VSRN, AFE PROTECTION CONTROL[RSNS] = 1	-11.1		-50	
V _{SCD_TB}	threshold voltage range	VSCD_TB = VSRP - VSRN, AFE PROTECTION CONTROL[RSNS] = 0	-5.5		-25	- mV
A)/	SCD_TB detection	VSCD_TB = VSRP - VSRN, AFE PROTECTION CONTROL[RSNS] = 1		-5.5		
$\Delta V_{\text{SCD}_{\text{TB}}}$	threshold voltage program step	VSCD_TB = VSRP - VSRN, AFE PROTECTION CONTROL[RSNS] = 0		-2.75		- mV
VOFFSET	OCD, SCC, and SCDx offset error	Post-trim	-2.5		2.5	mV
V _{SCALE}	OCD, SCC, and SCDx	No trim	-10		10	%
V SCALE	scale error	Post-trim	-5		5	- 70
OCD, SCC,	SCD1, SCD2 and CD_TB (Current Protection Timing - $V_{CC} = 4.4V$ to 26V				
t _{OCD}	OCD detection delay time		1		31	mS
Δt_{OCD}	OCD detection delay time program step			2		mS
t _{SCC}	SCC detection delay time		0		915	μS
Δt_{SCC}	SCC detection delay time program step			61		μS
t _{SCD1}	SCD1 detection delay	AFE PROTECTION CONTROL[SCDDx2] = 0	0		915	μS
USCD1	time	AFE PROTECTION CONTROL[SCDDx2] = 1	0		1850	μΟ
۸+	SCD1 detection delay time	AFE PROTECTION CONTROL[SCDDx2] = 0		61		μS
Δt_{SCD1}				121		μο
	program step	AFE PROTECTION CONTROL[SCDDx2] = 1				-
4	program step SCD2 detection	AFE PROTECTION CONTROL[SCDDx2] = 1 AFE PROTECTION CONTROL[SCDDx2] = 0	0		458	
t _{SCD2}			0		458 915	- μS
	SCD2 detection	AFE PROTECTION CONTROL[SCDDx2] = 0	-	30.5		
t_{SCD2} Δt_{SCD2}	SCD2 detection delay time	AFE PROTECTION CONTROL[SCDDx2] = 0 AFE PROTECTION CONTROL[SCDDx2] = 1	-	30.5 61		μS μS
Δt _{SCD2}	SCD2 detection delay time SCD2 detection delay	AFE PROTECTION CONTROL[SCDDx2] = 0AFE PROTECTION CONTROL[SCDDx2] = 1AFE PROTECTION CONTROL[SCDDx2] = 0	-			- μS
	SCD2 detection delay time SCD2 detection delay time program step	AFE PROTECTION CONTROL[SCDDx2] = 0AFE PROTECTION CONTROL[SCDDx2] = 1AFE PROTECTION CONTROL[SCDDx2] = 0AFE PROTECTION CONTROL[SCDDx2] = 1	0		915	
Δt _{SCD2} t _{CD_TB}	SCD2 detection delay time SCD2 detection delay time program step CD_TB detection delay	AFE PROTECTION CONTROL[SCDDx2] = 0AFE PROTECTION CONTROL[SCDDx2] = 1AFE PROTECTION CONTROL[SCDDx2] = 0AFE PROTECTION CONTROL[SCDDx2] = 1AFE PROTECTION CONTROL[CDTBx2] = 0	0		915 458	- μS - μS
Δt _{SCD2}	SCD2 detection delay time SCD2 detection delay time program step CD_TB detection delay time	AFE PROTECTION CONTROL[SCDDx2] = 0AFE PROTECTION CONTROL[SCDDx2] = 1AFE PROTECTION CONTROL[SCDDx2] = 0AFE PROTECTION CONTROL[SCDDx2] = 1AFE PROTECTION CONTROL[CDTBx2] = 0AFE PROTECTION CONTROL[CDTBx2] = 1	0	61	915 458	- μS




	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{ACC} Current fault delay time accuracy		lay time Max delay setting			10	%
Timing Req	uirements: SMBus 3.1 - V _c	_c = 4.4V to 26V				J
V _{IH}	Input High Voltage		1.35		V_{DD}	V
V _{HYS}	Switchover voltage hysteresis		0.08			V
V _{IL}	Input Low Voltage				0.8	V
V _{OL}	Outpput Low Voltage	I _{OL} =-20mA			0.4	V
I _{OL}	Low level output current	V _{OL} =0.4	-20			mA
I _{LEAK-BUS}	Leakage current		-200		200	uA
C _{BUS}	V _{BUS} capacitance				400	pF
fsmb, fscl	SMBus operating frequency		10		1,000	kHz
t TIMEOUT	Error signal detect time		25		35	mS
tніgн	Clock high period		0.26		50	uS
tLOW:SEXT	Cumulative clock low slave extend time				25	mS
tlow:mext	Cumulative clock low master extend time				10	mS
tF	Clock fall time				120	nS
t POR	Recovery time				500	mS
Timing Req	juirements: UART - $V_{CC} = 4.4$	4V to 26V				
V _{DD}	Supply Powert Input		3.135	3.3	3.465	V
C _{BUS}	Load capacitance				100	pF
f _{txd} , f _{rxd}	UART operating frequency		10		1000	kHz
Timing Req	uirements: SPI - V _{CC} = 4.4V	to 26V				<u>.</u>
Duty	SPI_CLK duty cycle		40	50	60	%
t SCLK	SPI_CLK clock perior		0.1	-	2	uS
ts_cs	SPI_CS set-up time		40	-	-	nS
ts_sdin	SPI_MOSI set-up time		20	-	-	nS
th_sdin	SPI_MOSI hold time		20	-	-	nS
tv_sdout	SPI_MISO valuaeble time		-	-	30	nS

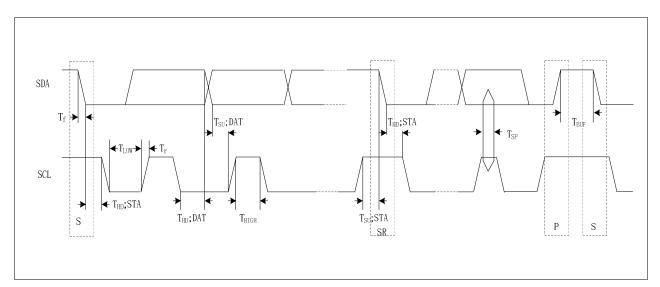
SPI Timing Diagram

SPI Timing Sequence Diagram

2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager In a QFN4x4-32 Package

PARAMETER	MODE	TEST CONDITION	MCU TEST CONDITION	MIN	ТҮР	MAX	UNIT	
		VADC=ON, ADC_FILTER=ON, CC=ON, CC_FILTER=ON, LFO=ON, LDO2V=ON, LDO5V=ON, LDO3V3=ON, LDO1P5V=ON, CHG=ON, DSG=ON, VMBC=OFF	CPU=ACTIVE, HFO=ON, RTC=ON, No Communication		7.6	9.2	mA	
Inormal	Normal	VADC=ON, ADC_FILTER=ON, CC=ON, CC_FILTER=ON, LFO=ON, LDO2V=ON, LDO5V=ON, LDO3V3=ON, LDO1P5V=ON, CHG=ON, DSG=ON, VMBC=OFF	CPU=SLEEPING, HFO=ON, RTC=ON, No Communication		4.1	5	mA	
INORMAL	Mode	VADC=ON, ADC_FILTER=ON, CC=ON, CC_FILTER=ON, LFO=ON, LDO2V=ON, LDO5V=ON, LDO3V3=ON, LDO1P5V=ON, CHG=ON, DSG=OFF, VMBC=ON	CPU=ACTIVE, HFO=ON, RTC=ON, No Communication		8.6	10.5	mA	
		VADC=ON, ADC_FILTER=ON, CC=ON, CC_FILTER=ON, LFO=ON, LDO2V=ON, LDO5V=ON, LDO3V3=ON, LDO1P5V=ON, CHG=ON, DSG=OFF, VMBC=ON	CPU=SLEEPING, HFO=ON, RTC=ON, No Communication		5.1	6.2	mA	
		VADC=OFF, ADC_FILTER=OFF, CC=OFF, CC_FILTER=OFF, LFO=ON, LDO2V=ON, LDO3V=ON, LDO3V3=ON, LDO1P5V=ON, CHG=ON, DSG=ON, VMBC=OFF	CPU=SLEEPING, HFO=OFF, RTC=ON, No Communication (5.5uA)		96.5	116	uA	
		. SLEEP	SI FEP	VADC=OFF, ADC_FILTER=OFF, CC=OFF, CC_FILTER=OFF, LFO=ON, LDO2V=ON, LDO3V=ON, LDO3V3=ON, LDO1P5V=ON, CHG=ON, DSG=OFF, VMBC=ON	CPU=SLEEPING, HFO=OFF, RTC=ON ,No Communication (5.5uA+0.15uA)		96.5	116
ISLEEP	Mode	VADC=OFF, ADC_FILTER=OFF, CC=OFF, CC_FILTER=OFF, LFO=ON, LDO2V=ON, LDO5V=O N, LDO3V3=ON, LDO1P5V=ON, CHG=OFF, DSG=ON, VMBC=OFF	CPU=SLEEPING, HFO=OFF, RTC=ON, No Communication (5.5uA+0.15uA)		77	96	uA	
		VADC=OFF, ADC_FILTER=OFF, CC=OFF, CC_FILTER=OFF, LFO=ON, LDO2V=ON, LDO3V=ON, LDO3V3=ON, LDO1P5V=ON, CHG=OFF, DSG=OFF, VMBC=OFF	CPU=SLEEPING, HFO=OFF, RTC=ON, No Communication (5.5uA+0.15uA)		44.5	54	uA	
Ishutdown	SHUTD	ADC_FILTER=OFF, CC_FILTER=OFF, LFO=OFF, LDO2V=OFF, LDO5V=OFF, LDO3V3=ON, LDO1P5V=OFF, CHG=OFF, DSG=OFF, VADC=OFF, CC=OFF, SW/PA10/PA11 Pull Up ON (LDO3V3 1.3uA, NFET DRV 2.2uA)	CPU=SLEEPING, HFO=OFF, RTC=ON, No Communication (3.5uA, POR, BANDGAP, LDO1P5V, RTC)		7	10	uA	
19HU I DOWN	Mode	ADC_FILTER=OFF, CC_FILTER=OFF, LFO=OFF, LDO2V=OFF, LDO5V=OFF, LDO3V3=ON, LDO1P5V=OFF, CHG=OFF, DSG=OFF, VADC=OFF, CC=OFF, SW/PA10/PA11 Pull Up ON (LDO3V3 1.3uA, NFET DRV 2.2uA)	CPU=SLEEPING, HFO=OFF, RTC=OFF, No Communication (3uA,POR, BANDGAP, LDO1P5V)		6.5	9.5	uA	

Power Consumption Table



2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager In a QFN4x4-32 Package

ELECTRICAL CHARACTERISTICS – I2C Communication

Symbol	PARAMETER	STD I	NODE	FAST M	ODE	ULTRA-FA	AST MODE	UNIT
Symbol	FARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
V_{DD}	Operating Voltage	1.62	5.5	1.62	5.5	1.62	5.5	V
F _{SCL}	Operating frequency	0	100	0	400	0	1000	KHz
T _{HD:START}	Hold time of START	4	-	0.6	-	0.24	-	μS
T _{LOW}	Clock low period	4.7	-	1.3	-	0.52	-	μS
T _{HIGH}	Clock high period	4	-	0.6	-	0.24		μS
T _{SU:START}	Set-up time of START signal	4.7	-	0.6	-	0.24		μS
T _{HD:DATA}	Hold time	0	3.45	0	0.9	0	0.36	μS
T _{SU:DATA}	Set-up time	250	-	100	-	50		nS
T _R	Rise time of SCL and SDA	-	1000	20+0.1Cb ⁽¹⁾	300	-	120	nS
T _F	Fall time of SCL and SDA	-	300	20+0.1Cb ⁽¹⁾	300	-	120	nS
T _{SU:STOP}	Set-up time of STOP	4	-	0.6	-	-	0.24	μS
T _{BUF}	Bus free time between start and stop	4.7	-	1.3	-	0.52	-	μS
T _{SP}		N/A	N/A	0	50	0	20	nS

(1) Cb means the capacitance of whole line. The unit is pF.

I2C Standard and Fast-Mode Timing Diagram

FEATURE DESCRIPTION

PJ67250 is a battery pack-based single-chip fully integrated solution that provides a series of feature-rich single-chip solutions for power monitoring, protection and certification of 2-series, 3-series, and 4-series cell lithium-ion and lithium-polymer battery packs. PJ67250 has battery life monitoring, high-precision remaining power detection and lithium battery protection functions.

PACK VCC S BAT PBI VC5 VC4 VC3 VC2 VC1 CHG DSG VSS PCHG Cell Detach Detection Cell,Stack,Pa ck Voltage P-CH FET Drive Cell Balancino Power Mode Control High Side N-CH FET Drive Î Zero Volt charge control Power on Reset ligh Voltage I/O PA9 Wake omparato PA8 SRP 192bit FUSE TRIMING FUSE Contro FUSE Short circuit SRN RST SCAN/PA5/MISO High Voltage I/O AFE DIG DISP/RST/SW Random number generator Over curren comparato Watchdog timer NTC Bias AFE I2C COM engin EDCTRLC/PA10 Internal empsenso LED Display Drive I/O Vol tage reference1 LEDCTRLB/PA7/RX1 TS1/SD O/PA0/PCL LEDCTRLA/PA6/TX1 TS2/SD I/PA1/PDO NC/TESTEN TS3/PCL/SCAN_EN/PA2/CS TS4/PDO/TCK/PA3/SCLK PA4/DFT 5V/MISO Vol tage re ference 2 2.0V LDO regulator 3.3V LDO regulator ADC MUX AFE I2C CON HV 12C J ADC/CC PRONTEND ES FESC Low frequency oscillator SMBD/RXD/I2C SDA U 1.5V LDO regulator SBS High Voltage AFE SPI COM engin SMBC/TXD/I2C SCL ADC/CC Digital Filter î î Level Level PA1/P SDA ź 3 Ť đ 1<u>5</u>01 PA4/DFT S1 /SD ŝ High Frequer Oscillat 1.5V LDO POR 3.3V LDO POR Low Voltage I/O SPI Master I2C/SMBUS/UA RT LFO10KHz WDG I/O & Interrup Controller AFE COM Engine SBS COM Engine RTC Timers ECC 24M SWD ARM® Cortex™-M0 Π Т Program Flash EEPROM Data Flash EEPROM Data SRAM

FUNCTIONAL BLOCK DIAGRAM

Primary (1st Level) Safety Features

PJ67250 is configured to provide more extensive protection for batteries and battery systems. The following is a detailed explanation of the status flag bits of level one protection.

NAME	Primary	(1st Level) Safety Features
0111/	O - III U - demochte an Darte et'n e	0 - Normal
CUV	Cell Undervoltage Protection	1 - Happened
		0 - Normal
CUVC	Cell Undervoltage Protection Compensated	1 - Happened
		0 - Normal
COV	Cell Overvoltage Protection	1 - Happened
		0 - Normal
000	Overcurrent in Charge Protection	1 - Happened
		0 - Normal
		1 - Happened
OCD	Overcurrent in Discharge Protection	0 - Normal
		1 - Happened
		0 - Normal
AOLD	Overload in Discharge Protection	1 - Happened
4000	Ohard Ohardi in Oharda Dasta dian	0 - Normal
ASCC	Short Circuit in Charge Protection	1 - Happened
A 0 0 D	Ohard Ohardi in Diraharan Dada dirat	0 - Normal
ASCD	Short Circuit in Discharge Protection	1 - Happened
o Fo		0 - Normal
OTC	Overtemperature in Charge Protection	1 - Happened
C F		0 - Normal
OTD	Overtemperature in Discharge Protection	1 - Happened
OTE		0 - Normal
OTF	Overtemperature CHG/DSG FET protection	1 - Happened
	Hadadaan aadam in Ohama Dadaatian	0 - Normal
UTC	Undertemperature in Charge Protection	1 - Happened
- H		0 - Normal
UTD	Undertemperature in Discharge Protection	1 - Happened
		0 - Normal
SBSWF	Host Watchdog Timeout Protection	1 - Happened
DTO	Der ek sone Time et di Derte stiere	0 - Normal
PTO	Precharge Timeout Protection	1 - Happened
070	Fact Observe Time and Bracketing	0 - Normal
СТО	Fast Charge Timeout Protection	1 - Happened
00	Oversharea Distostion	0 - Normal
OC	Overcharge Protection	1 - Happened
	Overskersing Vallage Destantion	0 - Normal
CHGV	Overcharging Voltage Protection	1 - Happened
01100	Quere la serie a Quere el Desta di	0 - Normal
CHGC	Overcharging Current Protection	1 - Happened
DOLLOG	Over Drack and Overant Distantion	0 - Normal
PCHGC	Over Precharge Current Protection	1 - Happened

Secondary (2nd Level) Safety Features

The secondary safety features of the PJ67250 can be used to indicate more serious faults via the FUSE pin. This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging.

NAME	Secondary (2nd Level) Safety Features					
01.11/		0 - Normal				
SUV	Safety Undervoltage Permanent Failure	1 - Happened				
0.01/		0 - Normal				
SOV	Safety Overvoltage Permanent Failure	1 - Happened				
		0 - Normal				
SOCC	Safety Overcurrent in Charge Permanent Failure	1 - Happened				
0000		0 - Normal				
SOCD	Safety Overcurrent in Discharge Permanent Failure	1 - Happened				
0.07		0 - Normal				
SOT	Safety Overtemperature Permanent Failure	1 - Happened				
0.075		0 - Normal				
SOTF	Safety FET Overtemperature Permanent Failure	1 - Happened				
0.114		0 - Normal				
QIM	Qmax Imbalance Permanent Failure	1 - Happened				
0.0		0 - Normal				
СВ	Cell Balancing Permanent Failure	1 - Happened				
	langeden en lankelen en Dermon ent Feilung	0 - Normal				
IMP	Impedance Imbalance Permanent Failure	1 - Happened				
00	Consist: Devedation Development Failure	0 - Normal				
CD	Capacity Degradation Permanent Failure	1 - Happened				
		0 - Normal				
VIMR	Voltage Imbalance at Rest Permanent Failure	1 - Happened				
\/IN4A		0 - Normal				
VIMA	Voltage Imbalance Active Permanent Failure	1 - Happened				
OFFT		0 - Normal				
CFET	Charge FET Permanent Failure	1 - Happened				
DEET		0 - Normal				
DFET	Discharge FET Permanent Failure	1 - Happened				
FUSE	Fuse Failure Permanent Failure	0 - Normal				
FUSE	Fuse Failure Permanent Failure	1 - Happened				
AFERF	AFF Degister Dermonent Failure	0 - Normal				
AFERF	AFE Register Permanent Failure	1 - Happened				
AFEC	AFE Communication Permanent Failure	0 - Normal				
AFEC	AFE Communication Permanent Failure	1 - Happened				
21.1/1	Second Level Protector Permanent Failure	0 - Normal				
2LVL	Second Level Protector Permanent Failure	1 - Happened				
	Instruction Flock Checkours Democratic Feilure	0 - Normal				
IFCF	Instruction Flash Checksum Permanent Failure	1 - Happened				
	Data Elash Damar ant Esilara	0 - Normal				
DFW	Data Flash Permanent Failure	1 - Happened				
OTE		0 - Normal				
OTF	Open Thermistor Permanent Failure	1 - Happened				

Operating Status Report

PJ67250 can feedback the current operating status through SMBus and promptly feedback the current status of the battery management system to the system.

Name	Description
	Decemption
N N	Vhether the battery is connected to the application system
PRES 0) – No
1	– Yes
W	Vhether it is in Full Access mode
FAS 0) – No
1	– Yes
W	Vhether it is in Sealed mode
SS 0) – No
1	– Yes
N N	Vhether Check Sum has been generated
CSV 0	0 – No
1	– Yes
Ŵ	Vhether it is in the Wake-Up stage
WAKE 0	0 – No
1	- Yes
V	Vhether it is in Discharge state
DSG 0	0 – No
1	– Yes
W	Vhether it is in a Discharge-Prohibited state
XDSG 0	0 – No
1	– Yes
D	Data update error flag
DUE 0	0 – No
1	– Yes
ls	s the battery in Charging-Prohibited state
XCHG 0	0 – No
1	– Yes
ls	s the battery in a Charging-Suspended state?
CHGSUSP 0	0 – No
1	– Yes
ls	s the battery in a Pre-Charged state?
PCHG 0	0 – No
1	– Yes
ls	s the battery in Trickle-Charge state?
	0 – No
	– Yes
ls	s the battery in a Low Temperature Charging state?
	0 – No
	– Yes

Name	Description
	Is the battery charging at Standard Temperature state 1?
ST1CHG	0 – No
	1 – Yes
	Is the battery charging at Standard Temperature state 2?
ST2CHG	0 – No
	1 – Yes
	Is the battery in a High Temperature Charging state?
HTCHG	0 – No
	1 – Yes
	Is the battery in a Cell Balance state?
СВ	0 – No
	1 – Yes
	Is the battery voltage in an Overcharged state?
OC	0 – No
	1 – Yes

Charge Control Features

The PJ67250 charge control features include :

- Supports JEITA temperature ranges. Reports charging voltage and charging current according to the active temperature range
- Handles more complex charging profiles. Allows for splitting the standard temperature range into two subranges and allows for varying the charging current according to the cell voltage
- Reports the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts
- Reduces the charge difference of the battery cells in fully charged state of the battery pack gradually using a voltage-based cell balancing algorithm during charging. A voltage threshold can be set up for cell balancing to be active. This prevents fully charged cells from overcharging and causing excessive degradation and also increases the usable pack energy by preventing premature charge termination.
- Supports pre-charging/zero-volt charging
- Supports charge inhibit and charge suspend if battery pack temperature is out of temperature range
- Reports charging fault and also indicates charge status via charge and discharge alarms

Gas Gauging

PJ67250 accurately measures the remaining battery capacity based on the impedance measurement algorithm. The remaining capacity is measured by integrating the charging current and the discharging current, and the charging current is compensated in real time by the SOC status and temperature of the battery. PJ67250 will estimate the battery's pre-discharge and adjust the estimated value of the battery's self-discharge based on the

current temperature. PJ67250 supports TURBO 3.0 mode. TURBO 3.0 can tell the MCU the peak power and peak voltage of the battery that will not cause the system to reset and stop working.

Configuration

PJ67250 accurately measures the remaining battery capacity based on the impedance measurement algorithm.

Oscillator Function

The PJ67250 integrated the system clock by internal RC and does not require any external components.

■ 2-Series, 3-Series, or 4-Series Cell Configuration

When PJ67250 is configured for a 2-cell battery application, VC4, VC3, and VC2 are short-circuited. When configured for 3-cell applications, VC4 and VC3 are shorted.

Cell Balancing

PJ67250 supports battery balancing through bypass charging current during charging. The internal balancing bypass current can be up to 20mA. If a larger current needs to be bypassed, it can be achieved through external balancing.

Battery Parameter Measurements

Charge and Discharge Counting

PJ67250 integrates two ADCs, one SDADC for current measurement, and a second-order SDADC for battery voltage and temperature measurement.

One SDADC measures the charge and discharge current by measuring the current sensing resistor between SRP and SRN. The measurement range of this SDADC is -0.1V~0.1V. When $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is positive, it means the system is charging the battery. When $V_{SR} = V_{(SRP)} - V_{(SRN)}$ is negative, it means the system is discharging the battery.

Battery Trip Point (BTP)

The battery trip point (BTP) represents battery life, and this value is stored in the DF register. BTP can be set by the host with two capacity threshold points to ensure that an interrupt is generated when BTP is triggered, and the interrupt is output from BTP_INT. When BTP is triggered, BTP has a weak pull-up inside the chip.

Battery Lifetime Data Logging Features

The PJ67250 has several key battery parameters to record battery life. The following parameters will be updated every 10 hours if there is a difference between RAM and Data Flash.

Name	Number	Descriptions
MAXCV	1	Maximum Cell Voltages
MINCV	2	Minimum Cell Voltages
MAXDCV	3	Maximum Delta Cell Voltage
MAXCC	4	Maximum Charge Current

2-Series, 3-Series, and 4-Series Li-Ion Battery Pack Manager In a QFN4x4-32 Package

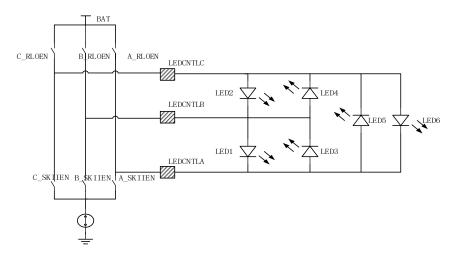
Name	Number	Descriptions
MAXDC	5	Maximum Discharge Current
MAXADC	6	Maximum Average Discharge Current
MAXADP	7	Maximum Average Discharge Power
MAXCT	8	Maximum Cell Temperature
MINCT	9	Minimum Cell Temperature
MAXDCT	10	Maximum Delta Cell Temperature
MAXIST	11	Maximum Internal Sensor Temperature
MINIST	12	Minimum Internal Sensor Temperature
MAXFETT	13	Maximum FET Temperature
NSEOCOO	14	Number of Safety Events Occurrences and the Last Cycle of the Occurrence
NCTALC	15	Number of Valid Charge Termination and the Last Cycle of the Valid Charge Termination
NQRUAC	16	Number of Qmax and Ra Updates and the Last Cycle of the Qmax and Ra Updates
NOSD	17	Number of Shutdown Events
CBTC	18	Cell Balancing Time for Each Cell (This data is updated every 2 hours if a difference is detected.)
TRTASET	19	Total FW Runtime and Time Spent in Each Temperature Range (This data is updated every 2 hours if a difference is detected.)

Authentication

The PJ67250 supports authentication by the host using SHA-1/ SHA-256.

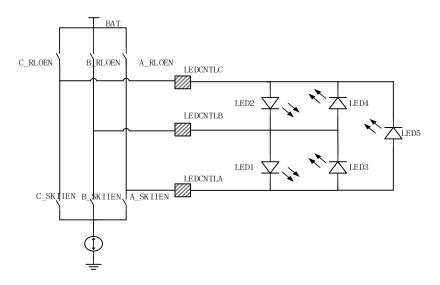
The PJ67250 supports ECC authentication.

LED Power Display


PJ67250 supports 3-, 4-, 5-, and 6-segment LED power display, and supports battery failure LED display. The LED display supports automatic scanning and manual scanning.

Manual scanning supports 3-, 4-, 5-, 6-segment LED power display. Automatic scanning supports 4-, 5-, and 6-segment LED power display. The LED display brightness supports adjustable Duty levels of 1~256.

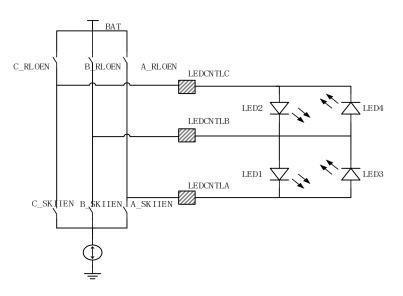
Clock	LED-Segment	LEDCKS[1:0] Pre-Segme		Actual Frequency (Hz)
	6	00	1	85.29
	6	01	2	42.64
	6	1x	4	21.32
	5	00 1		102.34
131kHz	5	01	2	51.17
	5	1x	4	25.59
	4	00	1	127.93
	4	01	2	63.96
	4	1x	4	31.98


Drive for 6 LEDs

LED Number configuration is 6								
LEDCNTLA	LA LEDCNTLB LEDCNTLC LED1 LED2 LED3 LED4 LED5 LE						LED6	
Pull-Up	Pull-Down	Floating	Off	Off	On	Off	Off	Off
Pull-Up	Floating	Pull-Down	Off	Off	Off	Off	On	Off
Pull-Down	Pull-Up	Floating	On	Off	Off	Off	Off	Off
Floating	Pull-Up	Pull-Down	Off	Off	Off	On	Off	Off
Pull-Down	Floating	Pull-Up	Off	Off	Off	Off	Off	On
Folating	Pull-Down	Pull-Up	Off	On	Off	Off	Off	Off

6 LEDs Display Table

Drive for 5 LEDs



LED Number configuration is 5							
LEDCNTLA	LEDCNTLB	LEDCNTLC	LED1	LED2	LED3	LED4	LED5
Pull-Up	Pull-Down	Floating	Off	Off	On	Off	Off
Pull-Up	Floating	Pull-Down	Off	Off	Off	Off	On
Pull-Down	Pull-Up	Floating	On	Off	Off	Off	Off
Floating	Pull-Up	Pull-Down	Off	Off	Off	On	Off
Pull-Down	Floating	Pull-Up	-				
Folating	Pull-Down	Pull-Up	Off	On	Off	Off	Off

5 LEDs Display Table

Drive for 4 LEDs

LED Number configuration is 4							
LEDCNTLA	LEDCNTLB	LEDCNTLC	LED1	LED2	LED3	LED4	
Pull-Up	Pull-Down	Floating	Off	Off	On	Off	
Pull-Up	Floating	Pull-Down	-				
Pull-Down	Pull-Up	Floating	On	Off	Off	Off	
Floating	Pull-Up	Pull-Down	Off	Off	Off	On	
Pull-Down	Floating	Pull-Up	-				
Folating	Pull-Down	Pull-Up	Off	On	Off	Off	

4 LEDs Display Table

Function description of AFE timer A

The setting range is 125ms to 64s, it can directly turn on CC for current measurement through the timer, and directly turn on VADC for polling. It can also wake up the MCU through the timer, and turn on CC and VADC through the MCU startup program.

Battery Voltage Measurement

VADC supports 21 channel measurement and up to 11 channel polling. Customers can configure 1 to 11 channel polling. It also supports single channel measurement and supports multiple averaging of single channel. During VADC measurement, it supports any conversion time from 1mS to 32mS.

Channel No.	Function Description	PGA	Measuement Range
4		PGA=1/2	0V~2.4V
1	AGND (Internal Short)	PGA=1	0V~1.2V
0		PGA=1/2	0V~2.4V
2	VTEMPP-VTEMPN (Internal temperature sensor)	PGA=1	0V~1.2V
2		PGA=1/2	0V~2.4V
3	VIN_VADC	PGA=1	0V~1.2V
4	TS*	PGA=1/2	0V~2.4V
4		PGA=1	0V~1.2V
5	VC4_DIV (BAT Voltage)	PGA=1/2	0V~2.4V x20
5	VC4_DIV (BAT Voltage)	PGA=1	0V~1.2V x20
6	PACK_DIV (PACK Voltage)	PGA=1/2	0V~2.4V x20
0	FACK_DIV (FACK Vollage)	PGA=1	0V~1.2V x20
7	VBUS_DIV (VBUS Voltage)	PGA=1/2	0V~2.4V x20
7		PGA=1	0V~1.2V x20
8	DACKST (DACK Short Detection)	PGA=1/2	0V~2.4V
o	PACKST (PACK Short Detection)	PGA=1	0V~1.2V
9	VC1-0	PGA=1/5	0V~6V
10	VC2-VC1	PGA=1/5	0V~6V
11	VC3-VC2	PGA=1/5	0V~6V
12	VC4-VC3	PGA=1/5	0V~6V
13	VCC-PACK (DSG MOS Impedance Detection)	PGA=1/2	-1V~1V
14	VBAT-VCC (CHG MOS Impedance Detection)	PGA=1/2	-1V~1V
15	VCC-VBUS (VBMC MOS Impedance Detection)	PGA=1/2	-1V~1V
16	VATP-VATN (ADC Auto-Measurement)	PGA=1/2	Generated internally

Battery Currengt Measurement

PJ67250 uses the sampling resistor between SRP and SRN to measure the charge and discharge current. The sampling resistor is usually between $1m\Omega$ and $3m\Omega$. It can also support $0.5m\Omega$ resistance sampling. When setting the $0.5m\Omega$ resistor sampling, the CC accuracy loses 1 effective bit.

Hardware protection

PJ67250 hardware protection includes OCD (Overcurrent in Discharge Protection), SCC (Short Circuit in Charge Protection), SCD1 (Short Circuit in Discharge Protection 1), SCD2 (Short Circuit in Discharge Protection 2). OCD, SCC, SCD1, and SCD2 all have separate enable controls to turn them on and off. When OCD, SCC, SCD1, and SCD2 are enabled, when any event occurs in OCD, SCC, SCD1, or SCD2, DSG/CHG and V_{BMC} will output low (V_{GS} is 0) and disconnect the MOS.

When C_ON/D_ON is set to 1, the DSG/CHG output is high (V_{GS} =11.5V around), off the MOS connection is closed.

When FLYMODE<1:0> is set to 11, the DSG/CHG output is high (V_{GS} =11.5V around) and the MOS connection is closed.

Timer

PJ67250 includes 1 advanced timer and 2 general timers

Advanced Timer (TIM1)

TIM1 is a 16-bit counter with 16-bit prescaler that can count up, down and up-down. It has four channels, all supporting input capture and output comparison. The output PWM signal can be used to control the motor or applied in power consumption management. The complementary outputs of each channel share the same embedded dead time configuration.

TIM1 can work together with other timers through the connection feature between timers. When DMA is enabled, DMA can read and write the TIM1 register. In debug mode, you can stop the counter from counting.

General Timers (TIM3 and TIM14)

2 general-purpose timers can be used as simple time bases or output PWM.

TIM3 is a 16-bit counter with 16-bit prescaler that can count up, down and up-down. They have four channels and all support independent input capture, output comparison and PWM generation. TIM3 can work together with other timers through the connection feature between timers. When DMA is enabled, DMA can read and write the TIM3 register. In debug mode, you can stop the counter from counting.

TIM14 is a 16-bit counter with 16-bit prescaler and only 1 channel for input capture, output comparison and PWM generation. In debug mode, you can stop the counter from counting.

Low Power Consumption Timer (LPTIM1)

A 16-bit counting timer that can be timed in deep sleep mode 2, 3-bit prescaler, supports 1 to 128 divider. The clock source can choose internal system clock, LSE, LRC, and supports pulse output and PWM output.

■ Tick Timer (SysTick)

The tick timer can be used in real-time operating systems and is also a standard down counter. It is a 24-bit down counter with HCLK or HCLK/8 as the clock source and automatic reloading function. When the counter reaches 0, the tick timer generates a maskable system interrupt.

Authentication

■ Asymmetric Algorithm

- Support SECP 192/224/256/384/512/521, SM2
- Support encryption/decryption
- ECC: supports NIST SECP curve; signature, signature verification, encryption, decryption, secret key generation, point verification
- SM2: supports signature, signature verification, encryption, decryption, secret key generation, and key exchange
- Hash Algorithm
 - Support SHA224/SHA256/SM3
 - Mode supports HMAC
 - Data endianness: byte swapping
- Random Number
 - Supports generating true/pseudo random numbers

Serial Debug Port (SWD-DP)

ARM Cortex-M0 integrates debugging components internally, and the SW debugging port is used to connect these debugging components.

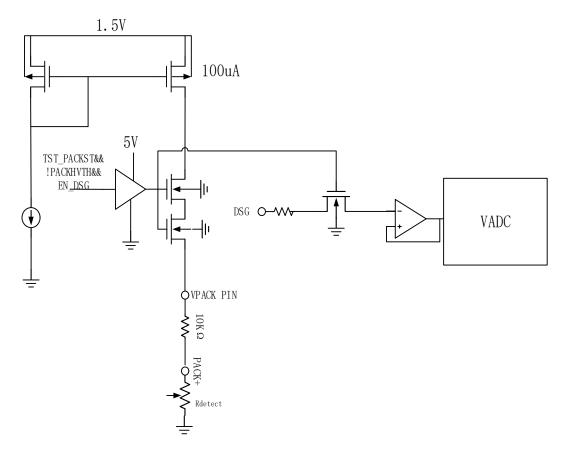
The SWD function can be disabled through option configuration. The software writes this configuration to disable the SWD function; the SWD function can be unlocked by erasing this option configuration, but the hardware will erase the entire APROM and LDROM when unlocking. If the LDROM is locked, the hardware automatically unlocks the LDROM., and erase it.

The SWD function can be permanently disabled through the chip Flash read and write protection mechanism and cannot be restored.

LDROM

The chip has a built-in 16KB/32KB/64KB LDROM with configurable size. The LDROM is customer programmable and supports locking through option configuration. After locking, erasing and writing operations cannot be performed to protect the LDROM from being accidentally rewritten. By unlocking the SWD function, the hardware will erase the entire APROM and LDROM. If the LDROM is locked, the hardware will automatically unlock the LDROM and erase it. This method is the only way to unlock the LDROM.

Out of order Powered on of VC1 to VC4, and BAT


PJ67250 supports out-of-order power-on of BAT and VC1 to VC4. Powering on high-voltage pins first will not cause overvoltage damage to low-voltage pins; voltage jitter during power-on will not cause accidental erasure or damage to the Flash in the chip.

Golden Key

PJ67250 built-in 4KB area for Golden key and only supports one time write. After writing, the hardware automatically performs verification and cannot be erased. The user software cannot read the data of Golden key area. Only the encryption module can read the Golden key through hardware and perform encryption/decryption related operations.

Support PACK+/PACK- short circuit protection detection

PJ67250 supports impedance detection of the battery output interface (between PACK+ and PACK-) when DSG MOS is turned off. When using this function, the MCU sends a command to start the detection signal source (TSTPACKST=1, the configuration is invalid when DSG MOS is on or PACK is inserted), and the 100uA current detection signal is excited (100uA accuracy is +/-20% accuracy) through VPACK The pin is output to the battery PACK+, and the MCU detects the battery PACK+ voltage through the VADC channel connected to the DSG pin (the detection accuracy is VPACK+/-0.2mV). The MCU detects the voltage result to determine whether the battery interface impedance is a short circuit.

C_ON/D_ON controls MOS shutdown directly

The MCU output signal can directly control the CHG/DSG MOS forced shutdown through the C_ON/D_ON pin. Even if the AFE chip is reset, the C_ON/D_ON pin directly controls the CHG/DSG MOS forced shutdown and is still valid. C_ON/D_ON controls CHG/DSG. MOS forced shutdown has the highest priority.

SMBus status detection

PJ67250 detects that SMBC and SMBD remain low for more than 2S, then it considers SMBus to be idle. To clear this state, you need to set SMBC or SMBD to high.

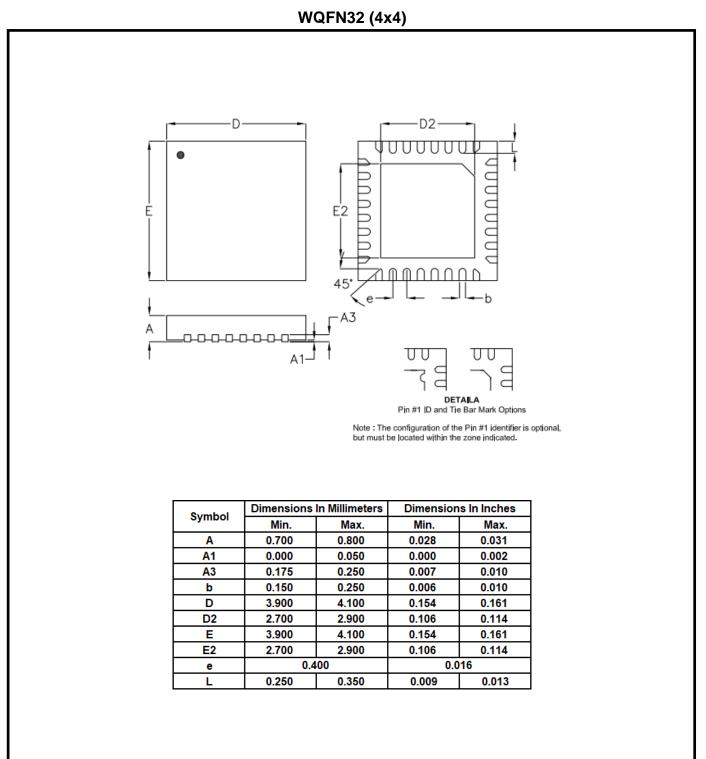
Power Consumption Mode

PJ67250 supports 3 power consumption modes:

Normal working mode:

PJ67250 high-precision measurement, calibration, high-precision lithium battery protection and data update every 0.25S. In other time periods, modules that are not necessary to be turned on are turned off.

SLEEP mode


PJ67250 high-precision measurement, calibration, high-precision lithium battery protection, the time interval for updating data is configurable, and modules that are not necessary to be turned off during other time periods are closed.

Shutdown mode:

PJ67250 is completely shut down.

PACKAGE DIMENSION

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.
- Since Panjit uses lot number as the tracking base, please provide the lot number for tracking when complaining